6.270 Lecture

Sensors, Motors, Gear Ratios, & Motor DC Theory

Steven Jorgensen Massachusetts Institute of Technology January 2014

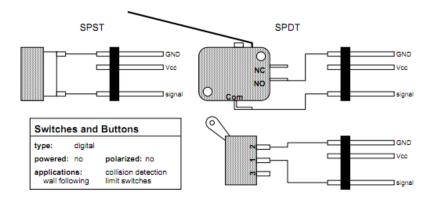
Overview of Lecture

Sensors

- Switches, Breakbeam/Optical Encoders, GyroScopes,
- Pull-up/Down Resistors
- IR-LED & Phototransistor, & Sharp IR Distance Sensor

Motors

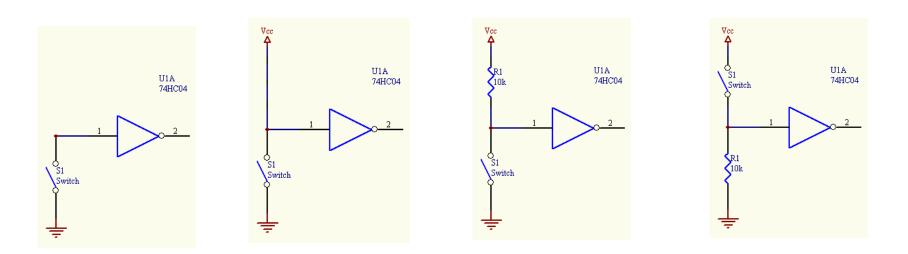
- 6.270 DC Motor
- Servo Motor
- Continuous Servo Motor


Gear Ratios

- Torque and Speed Tradeoff
- Sample Calculation/s

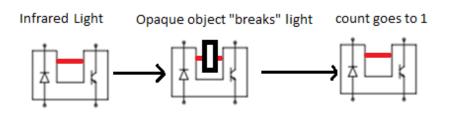
DC Motor Theory

- PWM / H-bridge
- Torque vs Speed, Current, Power, and Efficiency Curves
- Sample Calculation/s

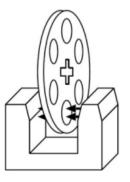

Sensors - Switches

- Digital Input Only Binary outputs (1 or 0)
 Wiring (Pins 0-23); Pins(0-7 recommended)
 - Single Pole Single Throw (SPST) Single Pole Double Throw (SPDT)
 - Normally Open (NO or digital output is 0 unless switch is pressed) vs. Normally Close (NC or digital output is 1 unless switch is pressed)
- Applications Wall Following, Alignment, Logic Stop
- Note about Pull-Up/Pull-Down Resistors
- Example on HappyBoard
 - b digital_read(Port #)

Pull-Up, Pull-Down Resistors

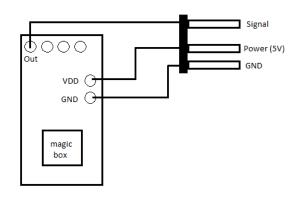

- Logic gates can have floating values (1 or 0).
 - Susceptible to Electrical Noise
- Pull-up/down Resistors always gives a definite value to logic.




BAD: Floating Logic Gate Susceptible to Electrical Noise BAD: Solves Problem until switch is closed leading to a short GOOD – Pull-up - When Switch is GOOD –Pull-down. When switch is OFF, Logic is set to HIGH OFF, Logic is set to LOW.

Images from: http://www.seattlerobotics.org/encoder/mar97/basics.html

Sensors: BreakBeam/Optical Shaft Encoders

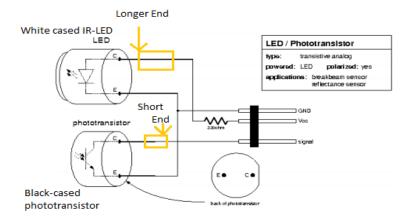


- Encoder Input (24-27): Transitive analog/Digital
 - IR-LED on Left, Phototransistor on right
- Wiring Tips

- Look for Diode Symbol
 GNDs are Diagonal from each other.
- Applications Track # of Wheel Rotations. Distance Calculation
- HappyTest Example
 - encoder_read(port#) and encoder_reset(port#)

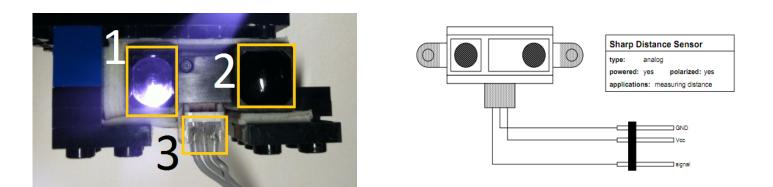
Sensors: Gyroscopes

• Analog (8-23)

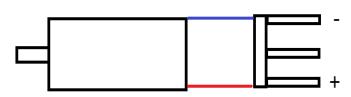

Recommended (20-23) with Pull-Up resistors to OFF

- Application: Measures the *perpendicular Axis of Rotation* using Velocity Integration:
 - Constant of Integration builds up error over time

$$x = \int v \, dt + C$$


- Needs Calibration of Rotation Angle Multiplier
- HappyBoard Example
 - > gyro_init (GYRO_PORT, LSB_US_PER_DEG, 500L);
 - Robot should be stationary during calibration
 - > gyro_get_degrees() returns float

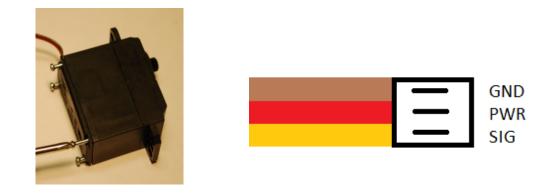
Sensors: IR-LED + Phototransistor


- Analog Input(0-23): For 20-23, have the Pull-ups ON
- InfraRed is emmited from LED. Phototransistor Receives light.
 - More Light = Lower Resistance = Lower analog Value
- Applications: BreakBeam, Line Follower, Light Follower
- HappyTest Example:
 - > analog_read(port#)

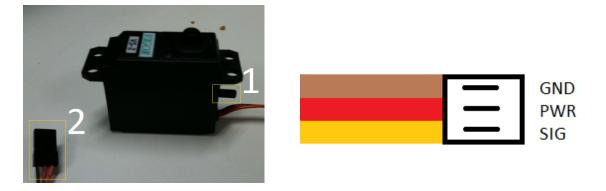
IR + Sharp Distance Sensor

- Applications measures distances from 8"-60"
 - Doesn't have to be perpendicular.
- Analog Input, pins 20-23 only. Pull-Up Resistors are <u>OFF.</u> (See HappyLab for 'loophole')
 - Sensor provides its own analog input.
- Near-Infrared is emitted from #1; #2 Measures Angle.
- Needs Calibration
 - Non-linear method of measuring distances
- HappyBoard Example: irdist_read(Port#) returns float in cm

Motors: DC Motor



	Reflected Values			
Free Speed	14292			RPM
Free Current		0.39		Amps
Stall Current	2.2			Amps
Stall Torque	0.00587			N-m
Internal R		3.181	818182	
Motor Operating \	/:		7	
Kt(Torque Constant)	0	.003241	Nm/A	
Kv (Velocity Constant)		1938.6	RPM/V	/
ke(Back emf)		.003241	V/rad/	s

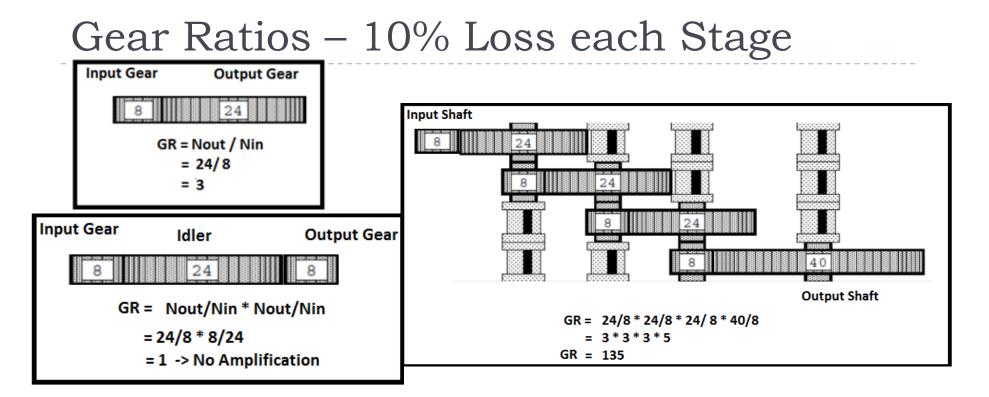

- Motor Pins 0-5 Ask Organizers for extra Motor Drivers
- Must have 8-tooth Gear Connected
- Very High RPM, Very Low Torque
 - Useless unless Gear Ratios are used to Increase Torque and Decrease Speed.
- POS, NEG terminals no distinct PWR/GND
 - Note: Flipping Connection flips Motor Direction
- HappyBoard Example: motor_set_vel(Port#, Speed)
 - Speed Ranges from -255 to 255.0 is stop.

Motors- Positional Servos

- Servo Pins 0-5. Three Cables: GND, PWR, SIG
- Precise Actuator limited to 0-180 degrees.
 - Actively set angular position of servo
 - No gear ratios
- Low RPM, Very High Torque
- Applications Slow & powerful arms, precise open-loop motions
- HappyBoard Example: servo_set_pos(port#, pos). Pos ranges from 0-511. CAREFUL with Extreme Positions.

Motors: Continuous Servos

- No longer restricted to 0-180deg, but no longer capable of precise motions.
 - Essentially a High Torque, Low RPM DC motor.
- NOT Recommended. Positional Servos are *beautiful!*
 - Permanent Change. Potential Screw-up
- Potentiometer Calibration is needed -> Servo's Center changes.
 Use HotGlue to find center
- HappyBoard Example:
 - Potentiometer's effect on: servo_set_pos(port#, pos) servo_disable(port#)

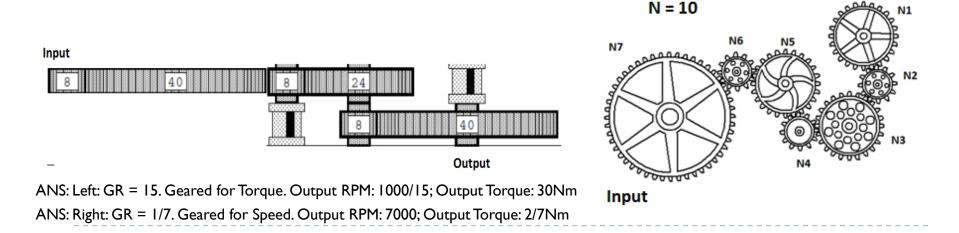

Gear Ratios

- Concept: Change output angular velocity & its Torque using gears
- Important Equation: $\frac{Gear \ Reduction}{N_{in}} = \frac{N_{out}}{N_{in}}$

▶ Derivables: Torque Ratio = G.R. =
$$\frac{T_{out}}{T_{in}}$$
 Speed Ratio = $\frac{W_{in}}{W_{out}}$

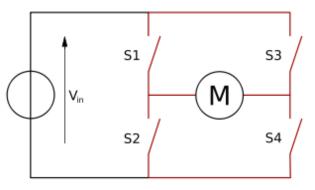
$$\frac{N_{out}}{N_{in}} = \frac{W_{in}}{W_{out}} = \frac{T_{out}}{T_{in}}$$

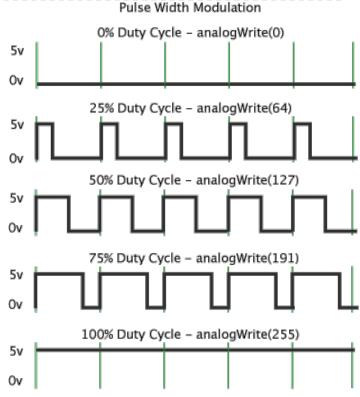
- Mechanical Advantage attained through conservation of Power $P = T_A \omega_A = T_B \omega_B$, Which yields $MA = \frac{T_B}{T_A} = \frac{\omega_A}{\omega_B}$.
- Higher Gear Reduction amplifies torque, trading speed.
- Lower Gear Reduction amplifies speed, trading torque.



- Simplest Case use: Nout/Nin
- Compound Gearing requires Repeated Multiplication of Gear Ratios at Every Stage
- Idler Gears Intermediate Gear does not contribute to ratio
 - Only Input and Output Matters
- Useful for switching directions and Spacing

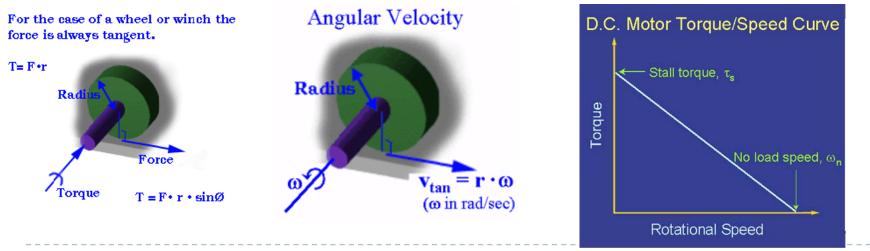
Gear Ratio Sample Calculations


- Given: Motor's Torque = 2N-m & RPM = 1000
- Calculate the Following Gear Ratios
- Which ones amplify torque and which amplifies speed?
 - By How Much?
- Remember: Gear Reduction = $\frac{N_{out}}{N_{in}}$


$$\frac{N_{out}}{N_{in}} = \frac{W_{in}}{W_{out}} = \frac{T_{out}}{T_{in}}$$

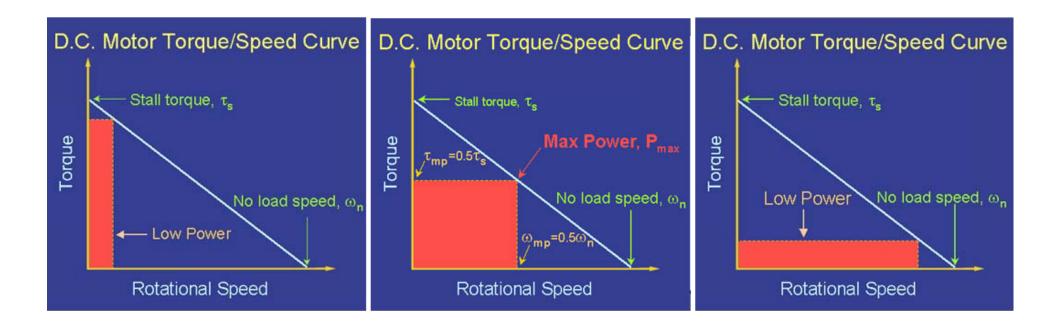
DC Motor Theory – PWM and H-Bridges

- PWM Pulse Width Modulation
- Changes Voltage across Battery
 - Scales RPM, Torque, Proportionally
 - No magical torque comes out when RPM goes down!
- H Bridges Directional Control
- of Motor



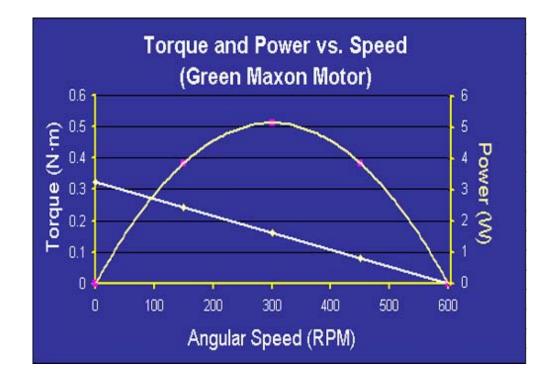
http://arduino.cc/it/Tutorial/PWM

Gear Ratio:	3					
	Reflected Values	Effective Gear Ratio		Motor Operating V:	7	
Free Speed	14292	4764	RPM			
Free Current	0.39	0.39	Amps			
Stall Current	2.2	2.2	Amps			
Stall Torque	0.00587	0.01760	N-m	Kt(Torque Constant)	0.003241	Nm/A
Internal R	3.181818182			Kv (Velocity Constant)	1938.6	RPM/V
				ke(Back emf)	0.003241	V/rad/


- Everything in DC Motor linearly Scales.
- Torque vs Speed Relationship

$$\tau_{\text{motor}} = \tau_{s} - \omega \tau_{s} / \omega_{n}$$
$$\omega_{\text{motor}} = (\tau_{s} - \tau) \omega_{n} / \tau_{s}$$

http://lancet.mit.edu/motors/motors3.html


- Power = Torque * Rotational Velocity (in radians)
- Max Power Occurs at ¹/₂ Stall Torque and ¹/₂ Rotational Speed

Plotting Torque & Power vs Speed

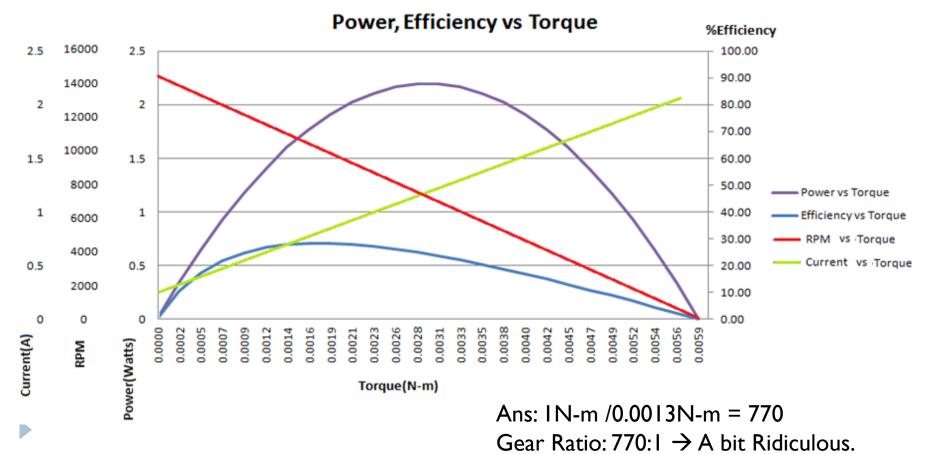
 \blacktriangleright Further shows that Max Power occurs at $^{1\!/_{2}}$ Torque and $^{1\!/_{2}}$ Speed

http://lancet.mit.edu/motors/motors3.html

DC Motor Theory – Usefulness?

Remember Gear Ratios?

- 6.270 DC Motors are very high RPM and very low Torque.
- Gear Ratios scale
 - Use G.R. to amplify torque outputs
 - When Torque Increases, Velocity Decreases


Gear Ratio:	3					
	Reflected Values	Effective Gear Ratio		Motor Operating V:	7	
Free Speed	14292	4764	RPM			
Free Current	0.39	0.39	Amps			
Stall Current	2.2	2.2	Amps			
Stall Torque	0.00587	0.01760	N-m	Kt(Torque Constant)	0.003241	Nm/A
Internal R	3.181818182			Kv (Velocity Constant)	1938.6	RPM/V
				ke(Back emf)	0.003241	V/rad/s

• Other Usefulness:

- Kt : Nm/A : How much Torque is provided for a given current passing through Motor
- Kv : RPM of motor for given V

 Useful Visualization: Given a Required Torque of IN-m, Find a Gear Ratio that operates near Efficiency

RPM, Current

Free Speed	14292		
Free Current	0.39		
Stall Current	2.2		
Stall Torque	0.00587		
Motor Operating	V: 7		

- Everything you need to know about a Motor's characteristics (Kt, Kv, Ke, Efficiency, Power, Graph, etc) can be derived from these scalar values
- Be sure to Download the 6.270 DC Motor Excel Graph to see how the math works.
- For the Lazy: Simply Input Torque and you Get Everything

	Torque Input(N-m)	vs RPM	vs Current(A)	vs Power(W)	vs %Efficiency
Input Torque	0.005	2110.7	1.9	1.1	8.2
At Max Power	0.00293	7146.0	1.3	2.2	24.2